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Interactions, Impacts and 

Coincidences of the First Golden 

Age of Computer Architecture
John R. Mashey Techviser, Portola Valley, CA 94028 

 

In their 2018 Turing Award lecture and 2019 paper John Hennessy and David Patterson reviewed 

computer architecture progress since the 1960s. They projected a second golden age akin to the 

first, approximately 1986-1996, when new Instruction Set Architectures (ISAs), almost all 

Reduced Instruction Set Computers (RISCs) revolutionized the industry, eliminated most 

minicomputer vendors, rivaled mainframes and began takeover of supercomputing. The C 

language and derivatives came to pervade systems programming, while Unix derivatives came 

to run many servers, desktops and smartphones. Such outcomes were not inevitable, but 

depended on evolutionary interactions of computer architecture and languages, industry 

dynamics and sometimes random coincidences. 

  Hennessy and Patterson reviewed progress of computer 

architecture since the 1960s [1]. There is no need to repeat 

two leaders’ well-known history or details from Wikipedia 

pages reviewed recently, shown in Italics on first use, for 

example, Reduced instruction set computer. 

Instead, this paper highlights sometimes-subtle technical 

interactions among languages, compilers, benchmarks, 

quantitative design, ISAs, caches, operating systems and 

nontechnical issues such as industry structure, company 

politics, university connections, alliances, conferences, and 

even odd coincidences with large impacts. 

Unix and C 

Unix and C (programming language) success partly 

resulted from their creation at Bell Labs (BTL), whose 

university-style research had a huge internal Bell System 

market on other companies computers while AT&T was not 

allowed to sell computers.  

Unix and C only existed due to an unusually-persistent 

BTL recruiter’s pursuit of a reluctant Ken Thompson. Unix 

and C might have evolved differently if implemented on 

preferred Digital Equipment Corporation (DEC) PDP-10 

rather than PDP-11. C’s success was hardly guaranteed. 

IBM might have released PL/8, DEC might have promoted 

BLISS more widely or some Pascal (programming 

language) variant might have taken C’s niche, as per 

Comparison of Pascal and C. 

Languages and benchmarks 

Languages drive ISA design. C worked best on CPUs with 

Byte addressing, 32-bit Word (computer architecture) and later, 

64-bit CPUs with full sets of size-specific memory accesses. At 

least 3 RISCs (Stanford MIPS, AMD Am29000,  and DEC Alpha) 

initially omitted 8- and 16-bit loads/stores. That choice simplified 

hardware and had long history in early Word addressing CPUs. C 

usage patterns drove designers to add 8- and 16-bit loads/stores. 

Quantitative methods increasingly replaced intuition, but made 

good benchmarks even more crucial. A coincidental 1988 email 

and resultant meeting of 4 competitors in a bar led to the impactful 

creation of the Standard Performance Evaluation Corporation 

(SPEC). 
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Installed bases and internal politics 

Computing companies are constrained by past successes 

and installed bases, as happened here with the leading 

mainframe and minicomputer companies, IBM and DEC. 

Technical excellence often ran afoul of internal battles.  

IBM pioneered RISC in the mid-1970s. John Cocke, 

Marty Hopkins and others kept pushing for it. Their 

optimizing PL/8 compiler even targeted several ISAs, but 

IBM’s priority was the IBM System/360 family. Effective 

IBM RISC systems were delayed until 1990’s IBM RS/6000. 

DEC repeatedly started and stopped RISC projects from 

the early 1980s onward, but its focus was the highly-

profitable VAX. Only in 1992 did its own Alpha ship [8]. 

Hewlett-Packard (HP) seemed to manage transitions 

from HP 2100, HP 3000, and Motorola 68000 to PA-RISC  

more smoothly. Most other minicomputer vendors struggled 

and then disappeared. 

Technical attributes of oft-mentioned CPUs 

Table 1 summarizes key integer/addressing issues of 

some relevant CPUs. Bits/register are underscored for 32-bit 

CPUs later extended straightforwardly to 64/32-bit. 

The # of registers accessible at one time are underscored 

for those with the register window feature.  

Load/store sizes show number of bytes transferred, 

underscored for load/store multiple. Aligned (A) specifies  

integral alignment as in S/360, but not S/370 and others.  

 Most system RISCs use 4-byte instructions. Some added 

2-byte operations for embedded market, where ARM got 

first real success. 

Some CISC CPUs do Memory-memory operations, 

maximum size as shown. 

As per Addressing mode, the PDP-10 had multilevel 

indirect addressing (M). The PDP-11 and VAX supported 

one level (1), added by Motorola in MC68020. 

CPUs here illustrate 3 key lessons. First designs are 

driven above all by data types. A CPU must provide fast 

parallel hardware for its market’s frequently-used data types. 

Hardware floating point is much faster than software 

emulation via integer instructions. Many ISAs have been 

extended to handle multimedia data. However, sequences of 

simple instructions have often proved as fast as complex 

function call instructions. 

Second, complex instruction decoding, as in Intel i386, seems 

to be less troublesome for fast pipelining than multiple and/or 

indirect address mechanisms, as found in MC68020 and especially 

the VAX. 

Third, some wrongly thought RISC meant reduced number of 

instructions, but it really meant reduced complexity of instruction 

decode, easier pipelining and elimination of features rarely used 

by selected compilers. 

 

Table 1 – Key integer attributes, CISCs and RISCs 
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PDP-10 36 16 W 36,18b w 36b  M 

S/360 32 16 b 1,2,4 A 2,4,6 256  

S/360 44 32 16 b 1,2,4 A 2,4   

S/370 32 16 b 1,2,4  2,4,6 16MB  

XDS Sigma 5 32 16 W 1,2,4 A 4  1 

PDP-11 16 8 b 1,2  2,4 2 1 

VAX 32 16 b 1,2,4  1-56 2GB 1 

Intel 8086 16 8 b 1,2  1-6 2  

Intel i386- 32 8 b 1,2,4  1-15 4  

MC68000 32 8,8 b 1,2,4 2 2-10 4  

MC68020… 32 8,8 b 1,2,4  2-22 4 1 

UCB RISC II 32 32 b 1,2,4 A 4   

SPARC 32 32 b 1,2,4 A 4   

Stanford MIPS 32 16 W  w 4   

MIPS R2000- 32 32 b 1,2,4 A 4   

microMIPS 32 32 b 1,2,4 A 2,4   

HP PA RISC 32 32 b 1,2,4 A 4   

Am29000A 32 32 b 4 A 4   

Am29000C 32 32 b 1,2,4 A 4   

Alpha 1992 64 32 b 4,8 A 4   

Alpha 1996 64 32 b 1,2,4,8 A 4   

PowerPC 32 32 b 1,2,4  4   

ARM T32 32 16 b 1,2,4,8  2,4   

ARM A32 32 16 b 1,2,4,8  4   

ARM A64 64 32 b 1,2,4,8  4   
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PROLOG - BEFORE THE GOLDEN AGE 

Early 1960s mainframes 

In early 1960s, COBOL-oriented commercial systems, 

such as IBM 7080, IBM 1401 and Honeywell 200 used 

variable character strings and addressing. 

Technical mainframes were programmed in Fortran, 

using word addressing of various sizes, such as 48-bits in the 

upper CDC 3000 series, or CDC 6600’s 60-bits. More 

popular were 36-bit CPUs, which often included instructions 

for extracting and inserting packed (usually 6-bit) characters. 

Such included the IBM 7090, IBM 7040, Univac 1100/2200 

series, GE 600 series, and Digital Equipment Corporation 

(DEC) PDP-10.  

Although many wanted a higher-level System 

programming language, operating systems were usually 

written in assembly language for efficiency. Any such 

language was strongly influenced by the computer 

architecture(s) expected to use it. Unusually,  Burroughs 

large systems were programmed in ALGOL 60 variants, 

Fortran and COBOL.  

IBM System/360 and consequences 

The IBM System/360 replaced most of IBM’s existing 

computers with a single unified computer family using 8-bit 

Byte addressing. Operations on 4-byte integer registers 

resembled those of earlier word-addressing computers, but 

added loads/stores of bytes and 2-byte halfwords, now first-

class addressed data, all aligned on integral multiples of their 

size. The S/360 also executed varying-length memory-to-

memory operations for commercial applications. The design 

was driven by need to support both Fortran and COBOL, 

plus (unfulfilled) hope that the new PL/I would eventually 

supplant both. 

Hennessy and Patterson [1] noted that most models used 

Microcode, whose elimination was the focus of RISC. Three 

models were hardwired, including the IBM System/360 

Model 44, which removed memory-to-memory and decimal 

instructions, keeping the simpler instructions akin to RISCs’. 

Gordon Bell and Allen Newell’s classic 1971 book [2] 

showed it had unusually good cost/performance compared to 

the microcoded models. IBM’s PL/8 compiler used a similar 

subset, in co-evolution with the seminal 1970s RISC IBM 

801.. 

The IBM System/370 (1970) added more virtual-memory 

models and relaxed the integral data-alignment rules, as did 

the later DEC VAX and many CISC microprocessors. The C 

language specified strict alignment and early RISC designers 

were happy to oblige, as it avoided crossing cache line or 

page boundaries. In effect, they stuck with 360/44. 

Time-sharing, IBM and DEC 

IBM mainframes were originally intended for batch 

processing, but by late 1960s, leading-edge groups wanted time-

sharing operating systems, as in Multics on GE 645 or TENEX 

(operating system) on PDP-10. IBM was working on its own TSS 

(operating system), but it was late and slow, leading to creation of 

the Michigan Terminal System for IBM System/360 Model 67, the 

first model with Memory paging. This was followed by IBM’s 

CP-67, CP/CMS, and finally TSO (Time Sharing Option).  

DEC PDP-10s and later DECSYSTEM-10 and -20 were 

designed for time-sharing and were strongly preferred by many 

leading electrical engineering / computer science departments. For 

example, the April 1971 ARPANET map showed 15 sites. Just 5 

included IBM systems, but 8 had PDP-10s: SRI, Utah, MIT, Case, 

Carnegie, Harvard, BBN, Stanford. At Stanford, these remained in 

wide use into the mid-1980s. Coincidentally in 1971, the 

Microprocessor chronology started with the Intel 4004. 

Coincidence, minicomputers, C, Unix 

The BTL Computing Research department worked with MIT 

and General Electric on Multics and in 1966 hired Ken Thompson 

from UC Berkeley, after some real hesitation. Unix and C almost 

never happened. As per his 2005 Computer History Museum oral 

history, his teachers recommended him to a BTL recruiter, who he 

ignored for a week, but who called and visited him at home. BTL 

invited him to interview in New Jersey. He replied that he was not 

interested in a job but would take interviews to visit friends on 

East Coast, which BTL said was fine(!). He got an offer and after 

a few weeks’ thought, finally accepted. He kept close ties with 

Berkeley, spent sabbaticals there, helped it become the leading 

university for Unix work, but on PDP-11 and VAX, not PDP-10. 

After BTL halted Multics work, Thompson and Dennis Ritchie 

wrote the first Unix on an 18-bit PDP-7. The department wanted a 

PDP-10, but only had budget for a 16-bit PDP-11/20, limited to 

1/20th the memory, only 56KB shared by kernel and user program. 

It was first DEC CPU to switch from (12, 18 or 36)-bit words to 

8-bit byte-addressing, driven by IBM S/360 dominance. C evolved 

from BCPL via B (programming language), typeless languages 

well-suited to word-addressed CPUs, not so well matched to PDP-

11s. 
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Software was then often cross-compiled on a large 

system for downloading to a smaller minicomputer, but Unix 

was self-supporting on the PDP-11. The C compiler had to 

be kept small, so BTL did not write global optimizers like 

those of mainframe-based PL/8 or BLISS. C first appeared 

in Research Unix 2nd Edition (June 1972.  

By 1973, BTL had about 20 such systems, but 

Computing Research had acquired a much more capable 

PDP-11/45, with segmented memory management, 64KB 

Instruction and 64KB Data memories per user process. They 

had rewritten the kernel from assembly into C.  

In October 1973 the Programmer’s Workbench 

(PWB/UNIX) department got a PDP-11/45, the second at 

BTL, with 248KB memory, to support 16 interactive users. 

We ran the first, and for years, the largest, real Unix 

computer center, eventually supporting about 1000-

programmers building software for IBM System/370, (XDS) 

SDS series 5 and 36-bit Univac 1100/2200 series computers. 

By 1976, PDP-11 Model 70s with 1MB memory supported 

as many as 48 users, demanding great attention to memory 

usage and performance tuning. 

Ritchie’s PDP-11 C compiler was ported to the S/370 

and other architectures, in some cases easily, in other cases 

painfully. It could be made to work on word-addressing 

CPUs, but fit byte-addressed CPUs better. People noticed 

that C had little use for many ISA’s complex instructions. 

BLISS and Pascal were considered for BTL projects, the 

latter especially for tighter type-checking. P. J. Plauger 

wrote the PL360-like Little Implementation Language LIL, 

but C kept improving and LIL never caught on. Many 

suggested or even implemented changes to their copies of 

the C compiler. Ritchie certainly listened to suggestions, but 

he retained control over mainstream C, unlike Pascal, which 

spawned many variations to make a teaching language more 

useful in production. Apollo Computer wrote its fine Aegis 

operating system in Pascal, proving it possible, but it was a 

proprietary version not spread around schools. 

Given an earlier consent decree, AT&T could not sell 

computers externally. Research Unix Editions V5 and V6 

had been licensed very cheaply on a don’t-call-us basis to 

schools and later, to companies, not so cheaply. This made 

AT&T lawyers nervous, but the school-licensing had huge 

impacts, especially via UC Berkeley’s enthusiastic support. 

The lawyers disliked Lions' Commentary on UNIX 6th 

Edition, with Source Code (1976), but it was widely copied.  

As VAX-11/780 and other 32-bit superminicomputers 

appeared, Unix evolved to the far more portable Unix V7 (1979). 

It included Stephen C. Johnson’s Portable C Compiler (PCC), 

designed for easy retargeting to different ISAs. The software was 

just in time for Onyx Systems’ Zilog Z8000-based systems and 

others based on the NS32000 or Motorola 68000. Unix and C 

were portable, acceptable fits for the ISAs, PCC was not too big or 

slow to be unworkable on small systems and many systems 

programmers had learned Unix and C in school. 

DEC had invested heavily in a good operating system, BLISS-

based VAX/VMS, only to find many schools preferred Unix., so 

DEC eventually released its own Ultrix in 1984. Key DEC BLISS 

developer Ronald Brender years later wrote [3], “Over time 

management became painfully aware that most new employees 

already knew C but few knew anything about BLISS, which 

meant more lengthy training and integration periods.”  

THE FIRST GOLDEN AGE 

Coincidence and Stanford MIPS 

At UC Berkeley and Stanford, research groups led by 

Patterson and Hennessy were laying the research groundwork for 

expansion of RISC into the broader market. Sun Microsystem’s 

SPARC was a closely-related commercial adaptation of Berkeley 

RISC [4]. 

Stanford MIPS evolved more radically, as per Table 1, 

partially by coincidence. Entrepreneur/marketeer Steve Blank had 

worked at Convergent Technologies, but by Fall 1984 was 

consulting for the founders of MIPS Computer Systems. As sanity 

check, he brought them to talk to Convergent  people he knew, an 

impactful coincidence, at least personally and perhaps for MIPS. 

The MIPS folks presented Stanford MIPS CPU [5] [6], and 

optimizing compilers [7] and asked our opinions. I said I had 

followed RISC at BTL, had reviewed proposals favorably there, 

thought it was the right direction, but that their specific design had 

some problems for C and Unix. A bit surprised, they said they 

were really doing  a commercial-grade CPU inspired by Stanford 

MIPS, but not identical. They invited me to visit and review draft 

specifications on stimulating visits that consumed most Saturdays 

for a few months. Given the rare opportunity for a software person 

to influence an ISA design I joined MIPS in January 1985.  
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Quantitative design needs good benchmarks 

RISC designers at IBM, HP, DEC, Stanford and UC 

Berkeley focused on quantitative methods. All analyzed 

performance of compiled high-level language benchmarks, 

but designs could differ according to the choice of 

benchmarks, relative importance of languages and compiler 

technology. Unix-focused UC Berkeley used PCC and 

included Register windows to speed C function calls. IBM, 

HP and Stanford had aggressive global optimizing compiler 

technology that made windows seem less useful. Given its 

installed base of HP 3000 customers, HP included a few 

instructions to help decimal arithmetic for COBOL. 

Stanford’s compilers (C, Fortran, Pascal) were written in 

Pascal, running on DECSYSTEM-20 and Pascal 

benchmarks were used more than C for driving ISA design. 

University research efforts in microprocessor design 

inherently differ from creation of commercial-grade chips. 

The former should explore interesting ideas and hopefully 

produce test chips, but need not  implement all features of 

already well-understood features of commercial chips, so do 

not advance research. However, sometimes extensive 

relevant industrial experience never gets published, but 

matters greatly, as illustrated next. 

Hardware/software interactions at MIPS 

Word addressing. Stanford MIPS had 16 registers and 

32-bit word-addressing, 32-bit loads/stores, plus some 

support for 8-bit byte data in packed arrays [6] p.15, 

somewhat akin to the PDP-10 or  32-bit SDS/XDS Sigma 5 

(SDS Sigma Series). Word address bits were shifted left 2 

bits, freeing them to specify the byte. The same bit pattern 

might access different words depending on how it was 

interpreted. For instance, the binary bit pattern 101 could 

mean Word 5 or Byte 1 of Word 1. Pascal’s tight type 

checking might catch that, but C programmers sometimes 

passed int pointers to functions calling them char pointers, 

not usually caught by compilers. On byte-addressed CPUs, 

there is no ambiguity. 

The Stanford designers were fine architects (I’ve worked 

with many) who argued very strongly for this approach, 

based primarily on statistics of integer Pascal programs, 

which showed low percentages of 8-bit accesses [6] pp.15-

16. They also expressed little use for 16-bit integers, 

unsurprising given nature of Pascal, in which halfwords 

were not first-class data as in C. 

I strongly urged Hennessy that we implement the more 

usual 8-, 16, and 32-bit load/store operations, ideally with 

both zero- and sign-extension loads, given personal compiler 

experience with Motorola 68010, which often required use 

of sign-extension instructions. 

Four problems were worrisome. The first two were software 

challenges from firsthand experience 1973-1984 moving Unix 

code around PDP-11, VAX, ATT 3B series computers, MC68000, 

68010, 68020 and others secondhand. The third degraded 

performance and code size, but the fourth was a serious structural 

issue for restricted 32-bit load/stores. 

C on word-addressed machines considered harmful. BTL 

had ported C to many ISAs, including word-addressed Univac 

1110, GE/Honeywell 645, 32-bit SDS/XDS Sigma 5, HP2100, 

Cray-1. Compiler and library writers recorded serious challenges 

via internal BTL memos rarely published outside. I heard similar 

stories from others at USENIX conferences. It was possible, just 

painful. 

Applications software not quite portable. From long 

experience, applications writers sometimes assumed all pointers, 

regardless of data type, to be simple memory addresses, given 

long history on PDP-11, VAX, IBM S/370, MC68K. While such 

code might be unclean, in practice it would likely work on byte-

addressed RISCs, but break oddly on Stanford MIPS, catastrophic 

for a small company begging ports from third-party vendors. 

Shorts in Unix kernel. Pascal usage differed from C, which 

had supported 16-bit shorts as first-class data since 1974, when 

short and long had been added for the Sigma 5 C project. Unix 

kernel memory was precious, so its code often used 8- and 16-bit 

data in packed structures, not strings. I searched our kernel source 

code for short and got 1000s of hits. A single load and especially 

store on most computers needed multi-instruction MIPS 

sequences. 

Memory-mapped I/O device registers. These often packed 

8- and 16-bit data together, easily described by simple C 

structures. The CPU had to issue byte address plus length field 

(1,2,4 bytes). Reading/writing 32-bit works either did not work or 

could cause unwanted side-effects. Off-the-shelf device drivers 

would need major and somewhat unnatural rewrites, as others 

found later. 

I said if we wanted to get software, we needed byte-addressing 

and a full set of loads/stores. Thankfully, Hennessy listened. 

Later confirmation. The Advanced Micro Devices (AMD) 

AMD Am29000 (1988) and DEC Alpha (1992) had byte 

addressing, but provided no 8- or 16-bit loads/stores, instead using 

load word+extract byte/half, and load word+insert byte/half, store 

word. Byte addressing solved the first two problems above. The 

third remained as a performance and code size issue. The fourth 

was painful. AMD quickly realized the problem and the Am29000 

Rev C (by 1990) added byte/halfword loads/stores, as did the 

Alpha 21164A (1996), as per Table 1.  
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Optimizers and caches versus kernel  

Unlike PCC, Stanford-derived MIPS compilers 

supported aggressive global register allocation, code motion 

and elimination of redundant operations. This could cause 

trouble for drivers when they accessed memory-mapped I/O 

devices, where status registers and counters changed 

externally and any load or store might cause side effects. For 

example, code might load the value of device register inside 

a loop and test it. The optimizer would hoist the test outside 

the loop and execute the test once. Luckily, in 1985, the C 

volatile keyword was coming into use. It took experience to 

get the right effect, that volatile accesses had to act exactly 

as if generated by a simpler non-optimizing compiler. 

I/O device register structures not only had to be declared 

volatile, to avoid irregular bugs they had to use uncached 

memory locations, for MIPS determined by memory 

mapping. In mid-1986, a tape device usually worked in a 

busy system, but failed in unloaded one, opposite the usual 

pattern. For a month we blamed  hardware, but the device 

structure accidentally had been mapped as cached. When a 

status register was read, in an empty system it sometimes got 

a cached value, but in a busy system, the resulting cache 

miss would deliver (desired) current status.  

Global optimizers sometimes had bugs and in 1986, 

likely only HP and IBM were compiling Unix with similar 

optimization levels.. At one point, our kernel crashed only  if 

compiled with high optimization. We had to binary search of 

kernel functions, compiling half with optimization, half 

without, eventually finding the optimizer had wrongly 

eliminated a single store. It is exciting to debug the 

combination of new ISA’s first implementation, new system 

hardware, young Unix port and aggressive optimizing 

compilers. Bugs might be anywhere. 

Industry structure and coincidence in 1988. 

By mid-1980s, microprocessors were designed, 

manufactured and sold by semiconductor companies such as 

Intel or Motorola, or else designed and manufactured by 

large companies such as IBM, HP, DEC or AT&T for use in 

their own computers. The latter usually provided key 

compilers and operating systems, the former often 

contracted with outside software companies.  

That changed somewhat around 1986, as both MIPS and 

Sun Microsystems designed RISCs, and licensed the designs 

to chip companies to sell to others as well. Sun encouraged 

many competing designs and was usually the biggest 

customer, while MIPS chips were sold to Silicon Graphics (SGI), 

DEC, Tandem Computers, Cisco and many others. MIPS and Sun 

were somewhat akin to modern fabless companies, but 

independent foundries were only just starting. That now well-

established model might have made life simpler. Alliance and 

ecosystems issues often outweighed technical design and many 

tricky negotiations occurred. One might have to present future 

plans to a company that might become a customer, a partner or a 

competitor, as in the MIPS-DEC relationship. 

DEC had excellent architects working on various RISC 

designs (DEC_PRISM), but were often diverted to work on 

improving VAX. By coincidence, an old BTL colleague then at 

DEC bumped into me at a January 1988 computer show. He asked 

about MIPS, so I gave him a MIPS Performance Brief that showed 

MIPS R2000s faster than any VAX. At the evening beer bust, 

after a few beers he asked if I thought it practical to port DEC’s 

Ultrix to MIPS, saying he wanted to show DEC CEO Ken Olsen it 

would not take years and hundreds of people. I explained why it 

was plausible. Although it seemed unlikely DEC would use an 

outside RISC CPU, after months with lawyers, we lent him 2 

systems. In less than 3 weeks, he and several others did a solid 

Ultrix port, a crucial step in DEC’s decision to build MIPS-based 

workstations and servers. 

DEC also partnered with MIPS, Microsoft and others in the 

Advanced Computing Environment (ACE) consortium. Dave 

Cutler, who had designed DEC’s Open VMS, had worked on DEC 

RISC chips canceled when DEC adopted MIPS, but joined 

Microsoft to architect Windows NT as portable beyond Intel 

CPUs. Microsoft wished to support alternatives to Intel, just as 

Intel encouraged alternatives to Microsoft operating systems. 

But finally, DEC announced its own DEC Alpha RISC in 

1992, so became a competitor again [8]. 

1989 - Hennessy and Patterson books 

Hennessy and Patterson [9] was published in 1989 and rapidly 

became the standard upper-level textbook, using MIPS ISA for 

examples until RISC-V in 2017. They somehow managed 

extensive revisions, 2 (1996), 3 (2003), 4 (2007), 5 (2011), and 6 

(2017). It would be hard to overestimate the impact of these books 

on the practice and education of computer architecture. 
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1989 Influential chip conferences 

Two conferences were quite influential, widely attended 

by key designers, potential partners, customers and 

employees, with much time for informal conversation and 

sometimes deals. 

Hot Chips. Hot Chips started in 1989, continues to this 

day, organized with rare continuity over 30+ years. It  

always combined academe and industry, starting with one 

Program Co-Chair from each. People submit abstracts and if 

chosen, need only provide presentations, to allow for the 

most recent (“hot”) work to be presented by lead engineers, 

who rarely had time to write full papers. 

The Hot Chips archive [10] is a valuable resource for the 

history of microprocessors and related chips, starting with 

the first, which included SPARC, MIPS, Motorola 88000 

and 68040, Intergraph Clipper architecture, Intel i486, i860, 

i960 and more. At the end of a conference filled with 

glowing chip presentations by hardware designers, the last 

session collected independent compiler writers to talk about 

their experiences, not always positive. PCC author Steve 

Johnson said compilers almost always lagged hardware 

design. He mentioned exceptions of CPUs designed around 

compiler technology: Berkeley RISC:PCC, Stanford: 

Optimizing Pascal, and IBM 801: PL/8, also high-

optimizing. 

Microprocessor Forum. MicroDesign Resources 

(MDR) was founded in 1987 and published the widely-read 

commercial newsletter Microprocessor Report. MDR held 

its Microprocessors ’89 conference in November 1988, 

renamed Microprocessor Forum the next year, focused on 

industrial products. A coincidental encounter at one with 

Microsoft people helped creation of the ACE consortium.  

After some ownership changes, Microprocessor Report is 

now published by The Linley Group, which has run similar 

conferences since 2005.  

1989 - SPEC foxes guard the henhouse 

In the 1980s, companies were using quantitative design 

methods, but widely-cited small benchmarks, such as 

Whetstone (benchmark) and Dhrystone were less useful [9] 

pp.45-49. Optimizing compilers could legitimately eliminate 

some code and some people outright cheated with special-

case optimizations, [9] pp.70-79. Vendor “MIPS-ratings” 

were quite inconsistent and customers disbelieved them. 

The correct way to summarize performance of sets of 

benchmarks was endlessly argued [9] pp.49-53. Magazines 

ran their own benchmarks. Computer vendors published 

Performance Briefs, often providing data on more  realistic, 

but different programs, hard to compare. Engineers who 

wrote these usually knew each other, traded documents, 

asked for updated numbers for fair comparisons. As in other 

areas of the industry, sometimes fierce competitors also 

cooperated and of course people moved around. 

SPEC started somewhat by coincidence. Stan Baker wrote 

often on microprocessors in the widely-read EE Times magazine. 

In Fall 1988, he listed performance ratings in “Dhrystone-MIPS,” 

performance relative to a VAX-11/780. I emailed him to complain 

and think someone else did, too. He challenged me: if we industry 

people thought it was so bad, why did we not create something 

better? He offered his bar in Campbell, CA as a neutral meeting 

place and would provide beer. Soon after, one representative from 

MIPS, HP, Sun and Apollo met there. We quickly agreed we 

would rather compete over realistic benchmarks, based on real 

programs, where improvements would deliver value to customers. 

We agreed that current practices wasted time and that if we could 

collect meaningful benchmarks and credible rules for running and 

reporting them, it would improve the industry. We identified a few 

programs we all used, but with different versions or inputs. 

SPEC was founded in November 1988 [11], IBM, DEC and 

other computer companies quickly joined. Baker agreed to be (a 

neutral) President. 

We spent the next year evaluating candidate programs, which 

had to be representative of real customer code, reasonably 

portable, distributable in source code, and have checkable output. 

This turned out to be harder than we thought. Engineers held 

“bench-a-thons” where we brought workstations together, moved 

programs around, helped each other debug incompatibilities, and 

created tests to make sure programs ran correctly. For example, 

floating point on VAX, MC68000 and the RISCs differed slightly, 

so we developed “fuzzy compares.”  

We settled on 4 integer and 6 floating point benchmarks 

officially  announced in late 1989. As per [9] p.48, we erred on 

matrix300, which was too small and easy to optimize in 

legitimate, but unrepresentative ways. We adopted practice from 

some Performance Briefs of computing ratios of performance 

versus VAX-11/780, always showing all data, but using 

Geometric mean (GM) to compute a single SPECmark.. We 

preferred separate GMs for integer and floating point, but many in 

the industry told us we really needed one number if we wanted 

rapid acceptance. Vendors started reporting both as well and 

SPEC officially split them by 1992. Benchmark sets evolved over 

time to remove those found obsolete and add better ones. 
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In the absence of workload weights, the correct way to 

average ratios is the GM, not the Arithmetic Mean (AM). 

Suppose system A is 2X faster than system B on benchmark 

1 and B 2X faster than A on benchmark 2. If A/B ratios are 

used, setting B to 1.0, then A’s ratios are 2.0 and 0.5, whose 

AM = 1.25, so A seems faster than B. But switching to B/A, 

B seems 1.25X faster than A. The GM correctly yields 1.0. 

 

Table 2 GM is the right mean for ratios 

Sys Benchmarks Relative Perf   

 1 

Perf 

2 

Perf 

1 

A/B  

2  

A/B 

AM GM 

A 2 1 2.0 0.5 1.25 1.0 

B 1 2 1.0 1.0 1.0 1.0 

 

But in 1989, we missed that for a set of ratios xi, the GM 

formula on left is equivalent to that on the right, a standard 

statistical transformation often used elsewhere in science. 
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This suggested that our benchmark ratio sets could be 

treated as samples from a larger population, so we could 

apply standard statistical analyses, compute standard 

deviations and other metrics. If the set of logarithms were 

tested and found to be normally distributed (a lognormal 

distribution), all its great properties became usable. This 

turned a sometimes-mysterious GM into standard statistics.  

I did not notice this until 2004 [12], discussed it in more 

depth in a Stanford talk and elsewhere years[13], and after 

many email discussions it got into [9] 4th Edition, pp.33-37. 

When we announced SPEC89, we were asked “But this 

sounds like foxes guarding the henhouse, how can we trust 

you?” We said no one is better than foxes at stopping other 

foxes from eating the hens. 

SPEC cooperation emerged from the golden age’s 

intense competition. It also engaged university researchers 

who studied and critiqued each benchmark iteration SPEC 

started with a meeting in a bar, continues to this day and has 

helped inspire other benchmarking efforts. It has had strong 

impacts on the design and tuning of systems for 30 years. 

64-Bit and speculative execution 

The MIPS R4000 was an early 64/32-bit microprocessor, 

shipped in SGI systems in early 1992, followed later that year by 

the 64-bit DEC Alpha. Over the next few years other ISAs 

evolved to 64/32-bit models and C evolved as well, not without 

toil and trouble[14]. By 1996, speculative, out-of-order designs 

were appearing in the market. 

EPILOG - RISC-V, THE ARM COINCIDENCE 
The History of free and open-source software is long, 

including user groups such as IBM SHARE (computing) (1955) 

and DEC DECUS (1961-). RISC-V is an interesting open-source 

hardware effort, whose ISA has many commonalities with other 

RISCs [15] p.2. RISC ISAs were more alike than not, CISC ISAs 

varied greatly and many ended or dwindled in the golden age. As 

Tolstoy wrote in Anna Karenina, “All happy families are alike; 

each unhappy family is unhappy in its own way.”  

The ARM architecture had not prospered in the workstation 

market, but Dave Jaggar drove its 1992-2000 evolution towards 

lower cost and power for embedded systems. It was a winner for 

mobile phones and the big winner for smartphones. In a May 29, 

2019 talk for Stanford’s SystemX Alliance, Jaggar revealed the 

ironic coincidence behind this success. At the University of 

Canterbury in Christchurch, NZ, in 1989, he was inspired to 

pursue architecture more deeply by a MIPS R3000 lecture, as he 

noted in his 2012 Computer History Museum oral history. He got 

convinced that ARM could never compete with MIPS 

performance. When he joined ARM in 1991, he drove it towards 

low-power embedded applications. As I had been that speaker in 

NZ, at Stanford he gave me a bottle of Hennessy cognac, noting 

lack of a Patterson equivalent. 

CONCLUSION 

Computers were once designed for Fortran, COBOL and all 

too often for assembly language. Over time, quantitative analyses 

of compiled code prevailed. But such analyses depend heavily on 

studying truly representative sets of benchmarks. By 1989, intense 

competition had generated much technical progress, but also the 

first of a famous series of textbooks, microprocessor conferences 

and the SPEC benchmarking group, all continuing today. 

RISC ISAs and RISCy implementations of the  remaining 

CISCs co-evolved especially with Unix, C on  byte-

addressed/accessed 32 and 64-bit CPUs. Computing today owes 

much to that first golden age and some odd coincidences that 

shaped both ISAs and industry. 
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