

This is accepted version, as of 08/23/21, very close to final https://ieeexplore.ieee.org/document/9623447

Published in: IEEE Micro (Volume: 41, Issue: 6, Nov.-Dec. 1 2021) Page(s): 131 – 139.

In this version, any phrase in Italics names a Wikipedia page: go to https://en.wikipedia.org and search.

Interactions, Impacts and

Coincidences of the First Golden

Age of Computer Architecture
John R. Mashey Techviser, Portola Valley, CA 94028

In their 2018 Turing Award lecture and 2019 paper John Hennessy and David Patterson reviewed

computer architecture progress since the 1960s. They projected a second golden age akin to the

first, approximately 1986-1996, when new Instruction Set Architectures (ISAs), almost all

Reduced Instruction Set Computers (RISCs) revolutionized the industry, eliminated most

minicomputer vendors, rivaled mainframes and began takeover of supercomputing. The C

language and derivatives came to pervade systems programming, while Unix derivatives came

to run many servers, desktops and smartphones. Such outcomes were not inevitable, but

depended on evolutionary interactions of computer architecture and languages, industry

dynamics and sometimes random coincidences.

 Hennessy and Patterson reviewed progress of computer

architecture since the 1960s [1]. There is no need to repeat

two leaders’ well-known history or details from Wikipedia

pages reviewed recently, shown in Italics on first use, for

example, Reduced instruction set computer.

Instead, this paper highlights sometimes-subtle technical

interactions among languages, compilers, benchmarks,

quantitative design, ISAs, caches, operating systems and

nontechnical issues such as industry structure, company

politics, university connections, alliances, conferences, and

even odd coincidences with large impacts.

Unix and C

Unix and C (programming language) success partly

resulted from their creation at Bell Labs (BTL), whose

university-style research had a huge internal Bell System

market on other companies computers while AT&T was not

allowed to sell computers.

Unix and C only existed due to an unusually-persistent

BTL recruiter’s pursuit of a reluctant Ken Thompson. Unix

and C might have evolved differently if implemented on

preferred Digital Equipment Corporation (DEC) PDP-10

rather than PDP-11. C’s success was hardly guaranteed.

IBM might have released PL/8, DEC might have promoted

BLISS more widely or some Pascal (programming

language) variant might have taken C’s niche, as per

Comparison of Pascal and C.

Languages and benchmarks

Languages drive ISA design. C worked best on CPUs with

Byte addressing, 32-bit Word (computer architecture) and later,

64-bit CPUs with full sets of size-specific memory accesses. At

least 3 RISCs (Stanford MIPS, AMD Am29000, and DEC Alpha)

initially omitted 8- and 16-bit loads/stores. That choice simplified

hardware and had long history in early Word addressing CPUs. C

usage patterns drove designers to add 8- and 16-bit loads/stores.

Quantitative methods increasingly replaced intuition, but made

good benchmarks even more crucial. A coincidental 1988 email

and resultant meeting of 4 competitors in a bar led to the impactful

creation of the Standard Performance Evaluation Corporation

(SPEC).

https://ieeexplore.ieee.org/document/9623447
https://en.wikipedia.org/

2

Installed bases and internal politics

Computing companies are constrained by past successes

and installed bases, as happened here with the leading

mainframe and minicomputer companies, IBM and DEC.

Technical excellence often ran afoul of internal battles.

IBM pioneered RISC in the mid-1970s. John Cocke,

Marty Hopkins and others kept pushing for it. Their

optimizing PL/8 compiler even targeted several ISAs, but

IBM’s priority was the IBM System/360 family. Effective

IBM RISC systems were delayed until 1990’s IBM RS/6000.

DEC repeatedly started and stopped RISC projects from

the early 1980s onward, but its focus was the highly-

profitable VAX. Only in 1992 did its own Alpha ship [8].

Hewlett-Packard (HP) seemed to manage transitions

from HP 2100, HP 3000, and Motorola 68000 to PA-RISC

more smoothly. Most other minicomputer vendors struggled

and then disappeared.

Technical attributes of oft-mentioned CPUs

Table 1 summarizes key integer/addressing issues of

some relevant CPUs. Bits/register are underscored for 32-bit

CPUs later extended straightforwardly to 64/32-bit.

The # of registers accessible at one time are underscored

for those with the register window feature.

Load/store sizes show number of bytes transferred,

underscored for load/store multiple. Aligned (A) specifies

integral alignment as in S/360, but not S/370 and others.

 Most system RISCs use 4-byte instructions. Some added

2-byte operations for embedded market, where ARM got

first real success.

Some CISC CPUs do Memory-memory operations,

maximum size as shown.

As per Addressing mode, the PDP-10 had multilevel

indirect addressing (M). The PDP-11 and VAX supported

one level (1), added by Motorola in MC68020.

CPUs here illustrate 3 key lessons. First designs are

driven above all by data types. A CPU must provide fast

parallel hardware for its market’s frequently-used data types.

Hardware floating point is much faster than software

emulation via integer instructions. Many ISAs have been

extended to handle multimedia data. However, sequences of

simple instructions have often proved as fast as complex

function call instructions.

Second, complex instruction decoding, as in Intel i386, seems

to be less troublesome for fast pipelining than multiple and/or

indirect address mechanisms, as found in MC68020 and especially

the VAX.

Third, some wrongly thought RISC meant reduced number of

instructions, but it really meant reduced complexity of instruction

decode, easier pipelining and elimination of features rarely used

by selected compilers.

Table 1 – Key integer attributes, CISCs and RISCs

S
y

st
em

B
it

s/
re

g
is

te
r

#
 o

f
R

eg
is

te
rs

.

W
o

rd
/b

y
te

 a
d
d

re
ss

L
o

ad
/s

to
re

 b
y

te
s,

m
u

lt
ip

le
 r

eg
is

te
rs

A
li

g
n

m
en

t
in

te
g

ra
l

In
st

ru
ct

io
n

 b
y

te
s

M
em

o
ry

-m
em

o
ry

,

m
ax

im
u
m

 #
 b

y
te

s

In
d
ir

ec
t

ad
d

re
ss

in
g

PDP-10 36 16 W 36,18b w 36b M

S/360 32 16 b 1,2,4 A 2,4,6 256

S/360 44 32 16 b 1,2,4 A 2,4

S/370 32 16 b 1,2,4 2,4,6 16MB

XDS Sigma 5 32 16 W 1,2,4 A 4 1

PDP-11 16 8 b 1,2 2,4 2 1

VAX 32 16 b 1,2,4 1-56 2GB 1

Intel 8086 16 8 b 1,2 1-6 2

Intel i386- 32 8 b 1,2,4 1-15 4

MC68000 32 8,8 b 1,2,4 2 2-10 4

MC68020… 32 8,8 b 1,2,4 2-22 4 1

UCB RISC II 32 32 b 1,2,4 A 4

SPARC 32 32 b 1,2,4 A 4

Stanford MIPS 32 16 W w 4

MIPS R2000- 32 32 b 1,2,4 A 4

microMIPS 32 32 b 1,2,4 A 2,4

HP PA RISC 32 32 b 1,2,4 A 4

Am29000A 32 32 b 4 A 4

Am29000C 32 32 b 1,2,4 A 4

Alpha 1992 64 32 b 4,8 A 4

Alpha 1996 64 32 b 1,2,4,8 A 4

PowerPC 32 32 b 1,2,4 4

ARM T32 32 16 b 1,2,4,8 2,4

ARM A32 32 16 b 1,2,4,8 4

ARM A64 64 32 b 1,2,4,8 4

 3

PROLOG - BEFORE THE GOLDEN AGE

Early 1960s mainframes

In early 1960s, COBOL-oriented commercial systems,

such as IBM 7080, IBM 1401 and Honeywell 200 used

variable character strings and addressing.

Technical mainframes were programmed in Fortran,

using word addressing of various sizes, such as 48-bits in the

upper CDC 3000 series, or CDC 6600’s 60-bits. More

popular were 36-bit CPUs, which often included instructions

for extracting and inserting packed (usually 6-bit) characters.

Such included the IBM 7090, IBM 7040, Univac 1100/2200

series, GE 600 series, and Digital Equipment Corporation

(DEC) PDP-10.

Although many wanted a higher-level System

programming language, operating systems were usually

written in assembly language for efficiency. Any such

language was strongly influenced by the computer

architecture(s) expected to use it. Unusually, Burroughs

large systems were programmed in ALGOL 60 variants,

Fortran and COBOL.

IBM System/360 and consequences

The IBM System/360 replaced most of IBM’s existing

computers with a single unified computer family using 8-bit

Byte addressing. Operations on 4-byte integer registers

resembled those of earlier word-addressing computers, but

added loads/stores of bytes and 2-byte halfwords, now first-

class addressed data, all aligned on integral multiples of their

size. The S/360 also executed varying-length memory-to-

memory operations for commercial applications. The design

was driven by need to support both Fortran and COBOL,

plus (unfulfilled) hope that the new PL/I would eventually

supplant both.

Hennessy and Patterson [1] noted that most models used

Microcode, whose elimination was the focus of RISC. Three

models were hardwired, including the IBM System/360

Model 44, which removed memory-to-memory and decimal

instructions, keeping the simpler instructions akin to RISCs’.

Gordon Bell and Allen Newell’s classic 1971 book [2]

showed it had unusually good cost/performance compared to

the microcoded models. IBM’s PL/8 compiler used a similar

subset, in co-evolution with the seminal 1970s RISC IBM

801..

The IBM System/370 (1970) added more virtual-memory

models and relaxed the integral data-alignment rules, as did

the later DEC VAX and many CISC microprocessors. The C

language specified strict alignment and early RISC designers

were happy to oblige, as it avoided crossing cache line or

page boundaries. In effect, they stuck with 360/44.

Time-sharing, IBM and DEC

IBM mainframes were originally intended for batch

processing, but by late 1960s, leading-edge groups wanted time-

sharing operating systems, as in Multics on GE 645 or TENEX

(operating system) on PDP-10. IBM was working on its own TSS

(operating system), but it was late and slow, leading to creation of

the Michigan Terminal System for IBM System/360 Model 67, the

first model with Memory paging. This was followed by IBM’s

CP-67, CP/CMS, and finally TSO (Time Sharing Option).

DEC PDP-10s and later DECSYSTEM-10 and -20 were

designed for time-sharing and were strongly preferred by many

leading electrical engineering / computer science departments. For

example, the April 1971 ARPANET map showed 15 sites. Just 5

included IBM systems, but 8 had PDP-10s: SRI, Utah, MIT, Case,

Carnegie, Harvard, BBN, Stanford. At Stanford, these remained in

wide use into the mid-1980s. Coincidentally in 1971, the

Microprocessor chronology started with the Intel 4004.

Coincidence, minicomputers, C, Unix

The BTL Computing Research department worked with MIT

and General Electric on Multics and in 1966 hired Ken Thompson

from UC Berkeley, after some real hesitation. Unix and C almost

never happened. As per his 2005 Computer History Museum oral

history, his teachers recommended him to a BTL recruiter, who he

ignored for a week, but who called and visited him at home. BTL

invited him to interview in New Jersey. He replied that he was not

interested in a job but would take interviews to visit friends on

East Coast, which BTL said was fine(!). He got an offer and after

a few weeks’ thought, finally accepted. He kept close ties with

Berkeley, spent sabbaticals there, helped it become the leading

university for Unix work, but on PDP-11 and VAX, not PDP-10.

After BTL halted Multics work, Thompson and Dennis Ritchie

wrote the first Unix on an 18-bit PDP-7. The department wanted a

PDP-10, but only had budget for a 16-bit PDP-11/20, limited to

1/20th the memory, only 56KB shared by kernel and user program.

It was first DEC CPU to switch from (12, 18 or 36)-bit words to

8-bit byte-addressing, driven by IBM S/360 dominance. C evolved

from BCPL via B (programming language), typeless languages

well-suited to word-addressed CPUs, not so well matched to PDP-

11s.

4

Software was then often cross-compiled on a large

system for downloading to a smaller minicomputer, but Unix

was self-supporting on the PDP-11. The C compiler had to

be kept small, so BTL did not write global optimizers like

those of mainframe-based PL/8 or BLISS. C first appeared

in Research Unix 2nd Edition (June 1972.

By 1973, BTL had about 20 such systems, but

Computing Research had acquired a much more capable

PDP-11/45, with segmented memory management, 64KB

Instruction and 64KB Data memories per user process. They

had rewritten the kernel from assembly into C.

In October 1973 the Programmer’s Workbench

(PWB/UNIX) department got a PDP-11/45, the second at

BTL, with 248KB memory, to support 16 interactive users.

We ran the first, and for years, the largest, real Unix

computer center, eventually supporting about 1000-

programmers building software for IBM System/370, (XDS)

SDS series 5 and 36-bit Univac 1100/2200 series computers.

By 1976, PDP-11 Model 70s with 1MB memory supported

as many as 48 users, demanding great attention to memory

usage and performance tuning.

Ritchie’s PDP-11 C compiler was ported to the S/370

and other architectures, in some cases easily, in other cases

painfully. It could be made to work on word-addressing

CPUs, but fit byte-addressed CPUs better. People noticed

that C had little use for many ISA’s complex instructions.

BLISS and Pascal were considered for BTL projects, the

latter especially for tighter type-checking. P. J. Plauger

wrote the PL360-like Little Implementation Language LIL,

but C kept improving and LIL never caught on. Many

suggested or even implemented changes to their copies of

the C compiler. Ritchie certainly listened to suggestions, but

he retained control over mainstream C, unlike Pascal, which

spawned many variations to make a teaching language more

useful in production. Apollo Computer wrote its fine Aegis

operating system in Pascal, proving it possible, but it was a

proprietary version not spread around schools.

Given an earlier consent decree, AT&T could not sell

computers externally. Research Unix Editions V5 and V6

had been licensed very cheaply on a don’t-call-us basis to

schools and later, to companies, not so cheaply. This made

AT&T lawyers nervous, but the school-licensing had huge

impacts, especially via UC Berkeley’s enthusiastic support.

The lawyers disliked Lions' Commentary on UNIX 6th

Edition, with Source Code (1976), but it was widely copied.

As VAX-11/780 and other 32-bit superminicomputers

appeared, Unix evolved to the far more portable Unix V7 (1979).

It included Stephen C. Johnson’s Portable C Compiler (PCC),

designed for easy retargeting to different ISAs. The software was

just in time for Onyx Systems’ Zilog Z8000-based systems and

others based on the NS32000 or Motorola 68000. Unix and C

were portable, acceptable fits for the ISAs, PCC was not too big or

slow to be unworkable on small systems and many systems

programmers had learned Unix and C in school.

DEC had invested heavily in a good operating system, BLISS-

based VAX/VMS, only to find many schools preferred Unix., so

DEC eventually released its own Ultrix in 1984. Key DEC BLISS

developer Ronald Brender years later wrote [3], “Over time

management became painfully aware that most new employees

already knew C but few knew anything about BLISS, which

meant more lengthy training and integration periods.”

THE FIRST GOLDEN AGE

Coincidence and Stanford MIPS

At UC Berkeley and Stanford, research groups led by

Patterson and Hennessy were laying the research groundwork for

expansion of RISC into the broader market. Sun Microsystem’s

SPARC was a closely-related commercial adaptation of Berkeley

RISC [4].

Stanford MIPS evolved more radically, as per Table 1,

partially by coincidence. Entrepreneur/marketeer Steve Blank had

worked at Convergent Technologies, but by Fall 1984 was

consulting for the founders of MIPS Computer Systems. As sanity

check, he brought them to talk to Convergent people he knew, an

impactful coincidence, at least personally and perhaps for MIPS.

The MIPS folks presented Stanford MIPS CPU [5] [6], and

optimizing compilers [7] and asked our opinions. I said I had

followed RISC at BTL, had reviewed proposals favorably there,

thought it was the right direction, but that their specific design had

some problems for C and Unix. A bit surprised, they said they

were really doing a commercial-grade CPU inspired by Stanford

MIPS, but not identical. They invited me to visit and review draft

specifications on stimulating visits that consumed most Saturdays

for a few months. Given the rare opportunity for a software person

to influence an ISA design I joined MIPS in January 1985.

 5

Quantitative design needs good benchmarks

RISC designers at IBM, HP, DEC, Stanford and UC

Berkeley focused on quantitative methods. All analyzed

performance of compiled high-level language benchmarks,

but designs could differ according to the choice of

benchmarks, relative importance of languages and compiler

technology. Unix-focused UC Berkeley used PCC and

included Register windows to speed C function calls. IBM,

HP and Stanford had aggressive global optimizing compiler

technology that made windows seem less useful. Given its

installed base of HP 3000 customers, HP included a few

instructions to help decimal arithmetic for COBOL.

Stanford’s compilers (C, Fortran, Pascal) were written in

Pascal, running on DECSYSTEM-20 and Pascal

benchmarks were used more than C for driving ISA design.

University research efforts in microprocessor design

inherently differ from creation of commercial-grade chips.

The former should explore interesting ideas and hopefully

produce test chips, but need not implement all features of

already well-understood features of commercial chips, so do

not advance research. However, sometimes extensive

relevant industrial experience never gets published, but

matters greatly, as illustrated next.

Hardware/software interactions at MIPS

Word addressing. Stanford MIPS had 16 registers and

32-bit word-addressing, 32-bit loads/stores, plus some

support for 8-bit byte data in packed arrays [6] p.15,

somewhat akin to the PDP-10 or 32-bit SDS/XDS Sigma 5

(SDS Sigma Series). Word address bits were shifted left 2

bits, freeing them to specify the byte. The same bit pattern

might access different words depending on how it was

interpreted. For instance, the binary bit pattern 101 could

mean Word 5 or Byte 1 of Word 1. Pascal’s tight type

checking might catch that, but C programmers sometimes

passed int pointers to functions calling them char pointers,

not usually caught by compilers. On byte-addressed CPUs,

there is no ambiguity.

The Stanford designers were fine architects (I’ve worked

with many) who argued very strongly for this approach,

based primarily on statistics of integer Pascal programs,

which showed low percentages of 8-bit accesses [6] pp.15-

16. They also expressed little use for 16-bit integers,

unsurprising given nature of Pascal, in which halfwords

were not first-class data as in C.

I strongly urged Hennessy that we implement the more

usual 8-, 16, and 32-bit load/store operations, ideally with

both zero- and sign-extension loads, given personal compiler

experience with Motorola 68010, which often required use

of sign-extension instructions.

Four problems were worrisome. The first two were software

challenges from firsthand experience 1973-1984 moving Unix

code around PDP-11, VAX, ATT 3B series computers, MC68000,

68010, 68020 and others secondhand. The third degraded

performance and code size, but the fourth was a serious structural

issue for restricted 32-bit load/stores.

C on word-addressed machines considered harmful. BTL

had ported C to many ISAs, including word-addressed Univac

1110, GE/Honeywell 645, 32-bit SDS/XDS Sigma 5, HP2100,

Cray-1. Compiler and library writers recorded serious challenges

via internal BTL memos rarely published outside. I heard similar

stories from others at USENIX conferences. It was possible, just

painful.

Applications software not quite portable. From long

experience, applications writers sometimes assumed all pointers,

regardless of data type, to be simple memory addresses, given

long history on PDP-11, VAX, IBM S/370, MC68K. While such

code might be unclean, in practice it would likely work on byte-

addressed RISCs, but break oddly on Stanford MIPS, catastrophic

for a small company begging ports from third-party vendors.

Shorts in Unix kernel. Pascal usage differed from C, which

had supported 16-bit shorts as first-class data since 1974, when

short and long had been added for the Sigma 5 C project. Unix

kernel memory was precious, so its code often used 8- and 16-bit

data in packed structures, not strings. I searched our kernel source

code for short and got 1000s of hits. A single load and especially

store on most computers needed multi-instruction MIPS

sequences.

Memory-mapped I/O device registers. These often packed

8- and 16-bit data together, easily described by simple C

structures. The CPU had to issue byte address plus length field

(1,2,4 bytes). Reading/writing 32-bit works either did not work or

could cause unwanted side-effects. Off-the-shelf device drivers

would need major and somewhat unnatural rewrites, as others

found later.

I said if we wanted to get software, we needed byte-addressing

and a full set of loads/stores. Thankfully, Hennessy listened.

Later confirmation. The Advanced Micro Devices (AMD)

AMD Am29000 (1988) and DEC Alpha (1992) had byte

addressing, but provided no 8- or 16-bit loads/stores, instead using

load word+extract byte/half, and load word+insert byte/half, store

word. Byte addressing solved the first two problems above. The

third remained as a performance and code size issue. The fourth

was painful. AMD quickly realized the problem and the Am29000

Rev C (by 1990) added byte/halfword loads/stores, as did the

Alpha 21164A (1996), as per Table 1.

6

Optimizers and caches versus kernel

Unlike PCC, Stanford-derived MIPS compilers

supported aggressive global register allocation, code motion

and elimination of redundant operations. This could cause

trouble for drivers when they accessed memory-mapped I/O

devices, where status registers and counters changed

externally and any load or store might cause side effects. For

example, code might load the value of device register inside

a loop and test it. The optimizer would hoist the test outside

the loop and execute the test once. Luckily, in 1985, the C

volatile keyword was coming into use. It took experience to

get the right effect, that volatile accesses had to act exactly

as if generated by a simpler non-optimizing compiler.

I/O device register structures not only had to be declared

volatile, to avoid irregular bugs they had to use uncached

memory locations, for MIPS determined by memory

mapping. In mid-1986, a tape device usually worked in a

busy system, but failed in unloaded one, opposite the usual

pattern. For a month we blamed hardware, but the device

structure accidentally had been mapped as cached. When a

status register was read, in an empty system it sometimes got

a cached value, but in a busy system, the resulting cache

miss would deliver (desired) current status.

Global optimizers sometimes had bugs and in 1986,

likely only HP and IBM were compiling Unix with similar

optimization levels.. At one point, our kernel crashed only if

compiled with high optimization. We had to binary search of

kernel functions, compiling half with optimization, half

without, eventually finding the optimizer had wrongly

eliminated a single store. It is exciting to debug the

combination of new ISA’s first implementation, new system

hardware, young Unix port and aggressive optimizing

compilers. Bugs might be anywhere.

Industry structure and coincidence in 1988.

By mid-1980s, microprocessors were designed,

manufactured and sold by semiconductor companies such as

Intel or Motorola, or else designed and manufactured by

large companies such as IBM, HP, DEC or AT&T for use in

their own computers. The latter usually provided key

compilers and operating systems, the former often

contracted with outside software companies.

That changed somewhat around 1986, as both MIPS and

Sun Microsystems designed RISCs, and licensed the designs

to chip companies to sell to others as well. Sun encouraged

many competing designs and was usually the biggest

customer, while MIPS chips were sold to Silicon Graphics (SGI),

DEC, Tandem Computers, Cisco and many others. MIPS and Sun

were somewhat akin to modern fabless companies, but

independent foundries were only just starting. That now well-

established model might have made life simpler. Alliance and

ecosystems issues often outweighed technical design and many

tricky negotiations occurred. One might have to present future

plans to a company that might become a customer, a partner or a

competitor, as in the MIPS-DEC relationship.

DEC had excellent architects working on various RISC

designs (DEC_PRISM), but were often diverted to work on

improving VAX. By coincidence, an old BTL colleague then at

DEC bumped into me at a January 1988 computer show. He asked

about MIPS, so I gave him a MIPS Performance Brief that showed

MIPS R2000s faster than any VAX. At the evening beer bust,

after a few beers he asked if I thought it practical to port DEC’s

Ultrix to MIPS, saying he wanted to show DEC CEO Ken Olsen it

would not take years and hundreds of people. I explained why it

was plausible. Although it seemed unlikely DEC would use an

outside RISC CPU, after months with lawyers, we lent him 2

systems. In less than 3 weeks, he and several others did a solid

Ultrix port, a crucial step in DEC’s decision to build MIPS-based

workstations and servers.

DEC also partnered with MIPS, Microsoft and others in the

Advanced Computing Environment (ACE) consortium. Dave

Cutler, who had designed DEC’s Open VMS, had worked on DEC

RISC chips canceled when DEC adopted MIPS, but joined

Microsoft to architect Windows NT as portable beyond Intel

CPUs. Microsoft wished to support alternatives to Intel, just as

Intel encouraged alternatives to Microsoft operating systems.

But finally, DEC announced its own DEC Alpha RISC in

1992, so became a competitor again [8].

1989 - Hennessy and Patterson books

Hennessy and Patterson [9] was published in 1989 and rapidly

became the standard upper-level textbook, using MIPS ISA for

examples until RISC-V in 2017. They somehow managed

extensive revisions, 2 (1996), 3 (2003), 4 (2007), 5 (2011), and 6

(2017). It would be hard to overestimate the impact of these books

on the practice and education of computer architecture.

 7

1989 Influential chip conferences

Two conferences were quite influential, widely attended

by key designers, potential partners, customers and

employees, with much time for informal conversation and

sometimes deals.

Hot Chips. Hot Chips started in 1989, continues to this

day, organized with rare continuity over 30+ years. It

always combined academe and industry, starting with one

Program Co-Chair from each. People submit abstracts and if

chosen, need only provide presentations, to allow for the

most recent (“hot”) work to be presented by lead engineers,

who rarely had time to write full papers.

The Hot Chips archive [10] is a valuable resource for the

history of microprocessors and related chips, starting with

the first, which included SPARC, MIPS, Motorola 88000

and 68040, Intergraph Clipper architecture, Intel i486, i860,

i960 and more. At the end of a conference filled with

glowing chip presentations by hardware designers, the last

session collected independent compiler writers to talk about

their experiences, not always positive. PCC author Steve

Johnson said compilers almost always lagged hardware

design. He mentioned exceptions of CPUs designed around

compiler technology: Berkeley RISC:PCC, Stanford:

Optimizing Pascal, and IBM 801: PL/8, also high-

optimizing.

Microprocessor Forum. MicroDesign Resources

(MDR) was founded in 1987 and published the widely-read

commercial newsletter Microprocessor Report. MDR held

its Microprocessors ’89 conference in November 1988,

renamed Microprocessor Forum the next year, focused on

industrial products. A coincidental encounter at one with

Microsoft people helped creation of the ACE consortium.

After some ownership changes, Microprocessor Report is

now published by The Linley Group, which has run similar

conferences since 2005.

1989 - SPEC foxes guard the henhouse

In the 1980s, companies were using quantitative design

methods, but widely-cited small benchmarks, such as

Whetstone (benchmark) and Dhrystone were less useful [9]

pp.45-49. Optimizing compilers could legitimately eliminate

some code and some people outright cheated with special-

case optimizations, [9] pp.70-79. Vendor “MIPS-ratings”

were quite inconsistent and customers disbelieved them.

The correct way to summarize performance of sets of

benchmarks was endlessly argued [9] pp.49-53. Magazines

ran their own benchmarks. Computer vendors published

Performance Briefs, often providing data on more realistic,

but different programs, hard to compare. Engineers who

wrote these usually knew each other, traded documents,

asked for updated numbers for fair comparisons. As in other

areas of the industry, sometimes fierce competitors also

cooperated and of course people moved around.

SPEC started somewhat by coincidence. Stan Baker wrote

often on microprocessors in the widely-read EE Times magazine.

In Fall 1988, he listed performance ratings in “Dhrystone-MIPS,”

performance relative to a VAX-11/780. I emailed him to complain

and think someone else did, too. He challenged me: if we industry

people thought it was so bad, why did we not create something

better? He offered his bar in Campbell, CA as a neutral meeting

place and would provide beer. Soon after, one representative from

MIPS, HP, Sun and Apollo met there. We quickly agreed we

would rather compete over realistic benchmarks, based on real

programs, where improvements would deliver value to customers.

We agreed that current practices wasted time and that if we could

collect meaningful benchmarks and credible rules for running and

reporting them, it would improve the industry. We identified a few

programs we all used, but with different versions or inputs.

SPEC was founded in November 1988 [11], IBM, DEC and

other computer companies quickly joined. Baker agreed to be (a

neutral) President.

We spent the next year evaluating candidate programs, which

had to be representative of real customer code, reasonably

portable, distributable in source code, and have checkable output.

This turned out to be harder than we thought. Engineers held

“bench-a-thons” where we brought workstations together, moved

programs around, helped each other debug incompatibilities, and

created tests to make sure programs ran correctly. For example,

floating point on VAX, MC68000 and the RISCs differed slightly,

so we developed “fuzzy compares.”

We settled on 4 integer and 6 floating point benchmarks

officially announced in late 1989. As per [9] p.48, we erred on

matrix300, which was too small and easy to optimize in

legitimate, but unrepresentative ways. We adopted practice from

some Performance Briefs of computing ratios of performance

versus VAX-11/780, always showing all data, but using

Geometric mean (GM) to compute a single SPECmark.. We

preferred separate GMs for integer and floating point, but many in

the industry told us we really needed one number if we wanted

rapid acceptance. Vendors started reporting both as well and

SPEC officially split them by 1992. Benchmark sets evolved over

time to remove those found obsolete and add better ones.

8

In the absence of workload weights, the correct way to

average ratios is the GM, not the Arithmetic Mean (AM).

Suppose system A is 2X faster than system B on benchmark

1 and B 2X faster than A on benchmark 2. If A/B ratios are

used, setting B to 1.0, then A’s ratios are 2.0 and 0.5, whose

AM = 1.25, so A seems faster than B. But switching to B/A,

B seems 1.25X faster than A. The GM correctly yields 1.0.

Table 2 GM is the right mean for ratios

Sys Benchmarks Relative Perf

 1

Perf

2

Perf

1

A/B

2

A/B

AM GM

A 2 1 2.0 0.5 1.25 1.0

B 1 2 1.0 1.0 1.0 1.0

But in 1989, we missed that for a set of ratios xi, the GM

formula on left is equivalent to that on the right, a standard

statistical transformation often used elsewhere in science.

()

=

=

==

=

n

i
i

n

G xxx
n

n

i
iGM

1

1

ln
1

exp

1
This suggested that our benchmark ratio sets could be

treated as samples from a larger population, so we could

apply standard statistical analyses, compute standard

deviations and other metrics. If the set of logarithms were

tested and found to be normally distributed (a lognormal

distribution), all its great properties became usable. This

turned a sometimes-mysterious GM into standard statistics.

I did not notice this until 2004 [12], discussed it in more

depth in a Stanford talk and elsewhere years[13], and after

many email discussions it got into [9] 4th Edition, pp.33-37.

When we announced SPEC89, we were asked “But this

sounds like foxes guarding the henhouse, how can we trust

you?” We said no one is better than foxes at stopping other

foxes from eating the hens.

SPEC cooperation emerged from the golden age’s

intense competition. It also engaged university researchers

who studied and critiqued each benchmark iteration SPEC

started with a meeting in a bar, continues to this day and has

helped inspire other benchmarking efforts. It has had strong

impacts on the design and tuning of systems for 30 years.

64-Bit and speculative execution

The MIPS R4000 was an early 64/32-bit microprocessor,

shipped in SGI systems in early 1992, followed later that year by

the 64-bit DEC Alpha. Over the next few years other ISAs

evolved to 64/32-bit models and C evolved as well, not without

toil and trouble[14]. By 1996, speculative, out-of-order designs

were appearing in the market.

EPILOG - RISC-V, THE ARM COINCIDENCE
The History of free and open-source software is long,

including user groups such as IBM SHARE (computing) (1955)

and DEC DECUS (1961-). RISC-V is an interesting open-source

hardware effort, whose ISA has many commonalities with other

RISCs [15] p.2. RISC ISAs were more alike than not, CISC ISAs

varied greatly and many ended or dwindled in the golden age. As

Tolstoy wrote in Anna Karenina, “All happy families are alike;

each unhappy family is unhappy in its own way.”

The ARM architecture had not prospered in the workstation

market, but Dave Jaggar drove its 1992-2000 evolution towards

lower cost and power for embedded systems. It was a winner for

mobile phones and the big winner for smartphones. In a May 29,

2019 talk for Stanford’s SystemX Alliance, Jaggar revealed the

ironic coincidence behind this success. At the University of

Canterbury in Christchurch, NZ, in 1989, he was inspired to

pursue architecture more deeply by a MIPS R3000 lecture, as he

noted in his 2012 Computer History Museum oral history. He got

convinced that ARM could never compete with MIPS

performance. When he joined ARM in 1991, he drove it towards

low-power embedded applications. As I had been that speaker in

NZ, at Stanford he gave me a bottle of Hennessy cognac, noting

lack of a Patterson equivalent.

CONCLUSION

Computers were once designed for Fortran, COBOL and all

too often for assembly language. Over time, quantitative analyses

of compiled code prevailed. But such analyses depend heavily on

studying truly representative sets of benchmarks. By 1989, intense

competition had generated much technical progress, but also the

first of a famous series of textbooks, microprocessor conferences

and the SPEC benchmarking group, all continuing today.

RISC ISAs and RISCy implementations of the remaining

CISCs co-evolved especially with Unix, C on byte-

addressed/accessed 32 and 64-bit CPUs. Computing today owes

much to that first golden age and some odd coincidences that

shaped both ISAs and industry.

 9

ACKNOWLEDGMENT
I have been lucky to work with and know many others

from whom I could learn, too many to list here, but

especially John Hennessy and Dave Patterson.

Various trademarks are the property of their respective

owners.

REFERENCES
1. J. L. Hennessy, D. A. Patterson, “A new golden age for

computer architecture,” Comm. ACM, vol.62, no. 2,

pp.48-60, February 2019, doi:10.1145/3282307.

https://cacm.acm.org/magazines/2019/2/234352-a-new-

golden-age-for-computer-architecture/fulltext

2. C. G. Bell and A. Newell, Computer Structures: Readings

and Examples, McGraw Hill. New York, 1971, p.569,

pp.584-585.

3. R. F. Brender, “"The BLISS programming language: a

history,” Software: Practice and Experience. vol 32, no

10, pp. 955–981. doi:10.1002/spe.470.

https://www.cs.tufts.edu/~nr/cs257/archive/ronald-

brender/bliss.pdf

4. D. A. Patterson, C. H. Sequin, “A VLSI RISC,” IEEE

Computer vol. 15, pp. 8-21, Sept 1982. doi:

10.1109/MC.1982.1654133

https://www.computer.org/csdl/magazine/co/1982/09/01

654133/13rRUwgyOfJ

5. S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. Jouppi,

C. Rowen, “Organization and VLSI implementation of

MIPS,” Stanford, Technical Report CSL-TR-84-259, April

1984.

http://i.stanford.edu/pub/cstr/reports/csl/tr/84/259/CSL-

TR-84-259.pdf

6 J. Hennessy, N. Jouppi, F. Baskett, T. Gross, J. Gill, S.

Przybylski, “Hardware/software tradeoffs for increased

performance,”, Stanford, Technical Report 22.8, Feb

1983.

http://i.stanford.edu/pub/cstr/reports/csl/tr/81/228/CSL-

TR-81-228.pdf

7. F. C. Chow, A portable machine-independent global

optimizer - design and measurements, Ph D dissertation,

Stanford, January 1983, pp,1-187.

https://www.researchgate.net/publication/213890050_A

_portable_machine-independent_global_optimizer_-

_design_and_measurements

8. G. Bell and W.D. Strecker, “What have we learned from

the PDP-11 – what have we learned from VAX and

Alpha”,

Proceedings ISCA ’98: 2, pp.6-10, August 1998.

https://doi.org/10.1145/285930.285934

https://gordonbell.azurewebsites.net/Digital/Strecker%20

Bell%20PDP-

11%20VAX%20Alpha%20Retrospective.pdf

9. J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach. Morgan Kauffman, San Francisco, CA,

1989. 1st Edition.

10. Hot Chips, archives. https://hotchips.org/archives/ Accessed

06/20/21, especially HC01 I(1989).

11. Standard Performance Evaluation Corporation (SPEC),

“SPEC: For 30 years, a beacon of truth,”

https://www.spec.org/30th/ Accessed 06/20/21.

12. J. R. Mashey, “War of the benchmark means: time for a truce,”

ACM SIGARCH Computer Architecture News vol 32, issue 4,

pp.1-14, September 2004. Doi: 10.1145/1040136.1040137

13. .J. R. Mashey, “Summarizing performance is no mean feat,”

October 30, 2008, talk given 2005-2008 at various places.

https://techviser.com/docs/Mashey.nomeanfeat.2008.pdf

14. J. R. Mashey, “The long road to 64 bits,” ACM Queue vol 4.

Issue 8, pp.24-35, October 10, 2006.

https://queue.acm.org/detail.cfm?id=1165766

15. T. Chen, D. A. Patterson, “RISC-V Geneology,” University of

California at Berkeley, Technical Report UCB/EECS-2016-6,

January 24, 2016.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-

2016-6.pdf

John R. Mashey received a 1974 PhD in Computer Science

from Penn State, which gave him the first Outstanding

Engineering Alumnus Award-Computer Science in 1997.

He contributed to the Programmer’s Workbench version of

Unix at BTL, to Unix software, MIPS RISC architecture and

systems designs at MIPS Computer Systems and Silicon

Graphics. The USENIX Association gave him the 2012

“Flame” Lifetime Achievement Award. He cofounded SPEC,

helped with the Hot Chips Conference for many years, and

has been a Trustee of the Computer History Museum since

2001. He is a member of ACM and IEEE Computer Society.

Contact him at mash@techviser.com

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://www.cs.tufts.edu/~nr/cs257/archive/ronald-brender/bliss.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/ronald-brender/bliss.pdf
https://www.computer.org/csdl/magazine/co/1982/09/01654133/13rRUwgyOfJ
https://www.computer.org/csdl/magazine/co/1982/09/01654133/13rRUwgyOfJ
http://i.stanford.edu/pub/cstr/reports/csl/tr/84/259/CSL-TR-84-259.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/84/259/CSL-TR-84-259.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/81/228/CSL-TR-81-228.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/81/228/CSL-TR-81-228.pdf
https://www.researchgate.net/publication/213890050_A_portable_machine-independent_global_optimizer_-_design_and_measurements
https://www.researchgate.net/publication/213890050_A_portable_machine-independent_global_optimizer_-_design_and_measurements
https://www.researchgate.net/publication/213890050_A_portable_machine-independent_global_optimizer_-_design_and_measurements
https://doi.org/10.1145/285930.285934
https://gordonbell.azurewebsites.net/Digital/Strecker%20Bell%20PDP-11%20VAX%20Alpha%20Retrospective.pdf
https://gordonbell.azurewebsites.net/Digital/Strecker%20Bell%20PDP-11%20VAX%20Alpha%20Retrospective.pdf
https://gordonbell.azurewebsites.net/Digital/Strecker%20Bell%20PDP-11%20VAX%20Alpha%20Retrospective.pdf
https://hotchips.org/archives/
https://www.spec.org/30th/
https://techviser.com/docs/Mashey.nomeanfeat.2008.pdf
https://queue.acm.org/detail.cfm?id=1165766
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-6.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-6.pdf
mailto:mash@techviser.com

