
Small Is Beautiful 0

Speaker – John R. Mashey

• Pennsylvania State University, 1964-1973, BS Math, MS/PhD Computer Science

• Bell Labs 1973-1983, MTS  Supervisor, early UNIX

– Programmer’s Workbench, shell programming, text processing,

workload measurement/tuning in first UNIX computer center,

UNIX+mainframe data mining apps, capacity planning/tuning

• Convergent Technologies 1983-1984, MTS  Director Software

– Compiler & OS tuning, uniprocessor/multiprocessor servers

• MIPS Computer Systems 1985-1992, Mgr. OS  VP Systems Technology

– System coprocessor, TLB, interrupt-handling; byte addressing(!), halfword instructions;

ISA evolution, multiprocessor features, multi-page-size TLB, 64-bit

– MIPS Performance Brief editor; a SPEC benchmarking group founder 1988 (GM)

– Hot Chips Conference (Stanford) committee ... continuing

• Silicon Graphics 1992-2000, Dir. Systems Tech  VP & Chief Scientist

– MIPS R10000 & later architecture, including performance counters & software

– ccNUMA system architecture (NUMAflex in Origin3000, Altix)

– Performance issues in HPC, DBMS; technology forecasting

– Evangelist, much work with sales and marketing, business development, strategy

• Advise/consult for Venture Capitalists & high-tech companies
Technical advisory boards (Dust Networks, Streetline Networks, Transitive, …);

Computer History Museum (www.computerhistory.org) Trustee; VCTaskForce

Travel; ski; hike; occasionally write articles & do talks for fun … i.e., ~ half-retired 

New

Jersey

Silicon

Valley

http://www.computerhistory.org/

Small Is Beautiful 1

For the 2002 BSDcon, I grabbed talks from 30 years ago, and used (images of) the

original foils for authenticity, to help see what's changed and what's the same.*

The first part, "Small is Beautiful and Other Thoughts on Programming Strategies,"

was first used in 1977, and was later given many times as Association for

Computing Machinery (ACM) National Lectures.

I was working on the Programmer's Workbench flavor of UNIX, and we'd had great

success in making UNIX available to much wider audiences of software engineers

targeting both UNIX-related and non-UNIX environments.

We were strong believers in UNIX philosophies of tool-building and -using, and

keeping software teams small during an era when there was strong emphasis on

methodologies and large teams that were anything but lightweight. This talk was the

result, and was considered somewhat radical at the time.

 Scripting languages, development environments, “agile development”

* I still have the original foils, but they’re starting to wear out, and actually, old

overhead projectors have started to disappear in favor of computers….

Originals were UNIX troff + hand-drawn graphics … not PowerPoint!

From: http://www.usenix.org/events/bsdcon/mashey_small, Thanks USENIX!

Dr John R. Mashey

Small is Beautiful

And Other Thoughts on Programming Strategies (1977-)

Small Is Beautiful 2

(UC) San Francisco

Livermore

Title

Small Is Beautiful 3

(UC) San Francisco

Livermore

Introduction

Small Is Beautiful 4

(UC) San Francisco

Livermore

Approaches

Small Is Beautiful 5

(UC) San Francisco

Livermore

“Do It Right”

Small Is Beautiful 6

(UC) San Francisco

Livermore

“Do It Over”

Small Is Beautiful 7

(UC) San Francisco

Livermore

Do It Small, with Tools

Small Is Beautiful 8

(UC) San Francisco

Livermore

Overview

Small Is Beautiful 9

(UC) San Francisco

Livermore

Success vs Failure

Small Is Beautiful 10

(UC) San Francisco

Livermore

Qualitative Metrics, a later addition

Small Is Beautiful 11

(UC) San Francisco

Livermore

Data Processing

Small Is Beautiful 12

(UC) San Francisco

Livermore

More D. P. (GOVT)

Small Is Beautiful 13

(UC) San Francisco

Livermore

Other Areas of R&D and Outside R&D

Small Is Beautiful 14

(UC) San Francisco

Livermore

Ways in Which Projects Fail

Small Is Beautiful 15

(UC) San Francisco

Livermore

Aspects of Size

Small Is Beautiful 16

(UC) San Francisco

Livermore

End-Product vs “Overhead”

Small Is Beautiful 17

(UC) San Francisco

Livermore

Size of Support Methodology

Small Is Beautiful 18

(UC) San Francisco

Livermore

Evolution and Entropy

Small Is Beautiful 19

(UC) San Francisco

Livermore

OK

OK

How Things Get Complex

Small Is Beautiful 20

(UC) San Francisco

Livermore

Local Scenarios

Small Is Beautiful 21

(UC) San Francisco

Livermore

Creeping Featurism (* coined in 1976 paper, I think)

Small Is Beautiful 22

Creeping Featurism – Overlay Build

THING

Small Is Beautiful 23

Creeping Featurism – Overlay Build

THING

+

FEATURE

Small Is Beautiful 24

Creeping Featurism – Overlay Build

THING

+ FEATURE

+ FUTURE FEATURE

Small Is Beautiful 25

Creeping Featurism – Overlay Build

THING

+ FEATURE

+ FUTURE FEATURE

+ NEEDED FEATURES

Small Is Beautiful 26

Creeping Featurism – Overlay Build

THING

+ FEATURE

+ FUTURE FEATURE

+ NEEDED FEATURES

UPWARD-COMPATIBLE

THING RELEASE 2

Small Is Beautiful 27

Creeping Featurism – Overlay Build

THING

+ FEATURE

+ FUTURE FEATURE

+ NEEDED FEATURES

UPWARD-COMPATIBLE

THING RELEASE 2

BUT GOOD ENOUGH

COVERS THE REAL NEEDS

Small Is Beautiful 28

Featuris Creepis (Baby) later addition

Small Is Beautiful 29

Featuris Creepis (Adult) later addition

Small Is Beautiful 30

(UC) San Francisco

Livermore

Usage Concentration and Intuition

Small Is Beautiful 31

(UC) San Francisco

Livermore

Strategies and Tactics

Small Is Beautiful 32

(UC) San Francisco

Livermore

Dependent Projects

Small Is Beautiful 33

(UC) San Francisco

Livermore

Risk Assessment – 1 Alligator, later addition

Small Is Beautiful 34

(UC) San Francisco

Livermore

Build It Quick

Small Is Beautiful 35

(UC) San Francisco

Livermore

Use Existing Tools

Small Is Beautiful 36

(UC) San Francisco

Livermore

Build Tools (Instead of Systems)

Small Is Beautiful 37

(UC) San Francisco

Livermore

Connecting Tools

Small Is Beautiful 38

(UC) San Francisco

Livermore

Progress in Tool-Oriented Approach

Small Is Beautiful 39

(UC) San Francisco

Livermore

Tools Are Good, later addition

Small Is Beautiful 40

(UC) San Francisco

Livermore

Problems, later addition

Small Is Beautiful 41

(UC) San Francisco

Livermore

Small tactics (External)

Small Is Beautiful 42

(UC) San Francisco

Livermore

Small Tactics (Internal)

Small Is Beautiful 43

(UC) San Francisco

Livermore

Performance

Small Is Beautiful 44

(UC) San Francisco

Livermore

Rays of Hope

Small Is Beautiful 45

(UC) San Francisco

Livermore

Conclusion

Small Is Beautiful 46

(UC) San Francisco

Livermore

We Have Met the Enemy

Small Is Beautiful 47

(UC) San Francisco

Livermore

But get the 1995 version.

Bibliography - 1 of 4

Small Is Beautiful 48

(UC) San Francisco

Livermore

Bibliography - 2 of 4

Small Is Beautiful 49

(UC) San Francisco

Livermore

Bibliography - 3 of 4

Small Is Beautiful 50

(UC) San Francisco

Livermore

Bibliography - 4 of 4

Small Is Beautiful 51

(UC) San Francisco

Livermore

Small Is Beautiful 52

(UC) San Francisco

Livermore

Small Is Beautiful 53

1977-now Retrospective

• Somewhat non-mainstream at the time

– Language Design for Reliable Software (rejected) 

– B. W. Kernighan, J. R. Mashey, “The UNIX Programming Environment”,

Computer 14, 4 (April 1981), 12-24.

• Tools, components,

• Shell programming, awk  scripting languages

• Automation – source control, build tools

• “Agile programming” somewhat of a descendant

– Same things get rediscovered again and again, with different names

• Still hard to get requirements right

– Many implicit decisions

– Some addressed in later “Software Army on the March” talk

– Best tool I’ve seen so far: Ravenflow, www.ravenflow.com . SEE THIS.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://www.ravenflow.com/

Small Is Beautiful 54

Retrospective – Open Source

• “Open Source” is most recent term for “ancient” practice

– ~1948 – David Wheeler invests subroutines for EDSAC@ Cambridge

– ~1952 – John von Neumann donates designs for Princeton IAS

– 1955 – IBM SHARE User’s Group founded

– 1961 – DECUS (Digital Equipment Corporation) user group founded

– 1960s – IBM HASP (mainframe OS code, user-modified)

» “Should old Chuck Forney be forgot, and HASP songs sung no more.”

– User-contributed libraries; trading amongst users

» Penn State ASSIST (Mashey & others), 1970- … still running 38 years later.

– 1970s – UNIX “open source” within Bell Labs

– 1970s – UNIX licensed to universities, government, “as is, don’t call us”

– 1970s – John Lions “Commentary on UNIX, with Source Code”

– 1970s – Berkeley UNIX, Ken @ Berkeley, DARPA $, Internet

– 1976 – B. W. Kernighan, P. J. Plauger, “Software Tools”, RATFOR.

»  Software Tools User’s Group (STUG)

– 1979 – UNIX V7 released – (reasonably) portable OS

– 1985 – Free Software Foundation (UNIX commands, especially GNU C)

– 1991 – Linux (kernel)

• Local libraries  magnetic tapes  UUCP  Internet  Web

• Local groups  vendor-based groups  large expansion

Small Is Beautiful 55

Retrospective … Future

• John R. Mashey, “Languages, Levels, Libraries, and Longevity”
– ACM Queue, Vol. 2, No. 9 - Dec/Jan 2004-2005
– http://www.acmqueue.org/modules.php?name=Content&pa=printer_friendly&pid=245&page=1

‘In 50 years, we’ve already seen numerous programming systems come and (mostly) go, although some
have remained a long time and will probably do so for: decades? centuries? millennia? The
questions about language designs, levels of abstraction, libraries, and resulting longevity are
numerous. Why do new languages arise? Why is it sometimes easier to write new software than to
adapt old software that works? How many different levels of languages make sense? Why do some
languages last in the face of “better” ones?

We can gather insights from the last 50 years of programming systems to the current time. For the far
future, Vernor Vinge’s fine science-fiction novel, A Deepness in the Sky, rings all too true. The young
protagonist, Pham, has joined a starship crew and is learning the high-value vocation of “programmer
archaeologist,” as the crew’s safety depends on the ability to find needed code, use it, and modify it
without breaking something. He is initially appalled at the code he finds:

The programs were crap…Programming went back to the beginning of time…There were programs here
that had been written five thousand years ago, before Humankind ever left Earth. The wonder of it—
the horror of it…these programs still worked…down at the very bottom of it was a little program that
ran a counter. Second by second, the Qeng Ho counted from the instant that a human had first set
foot on Old Earth’s moon. But if you looked at it still more closely… the starting instant was actually
about fifteen million seconds later, the 0-second of one of Humankind’s first computer operating
systems…

“We should rewrite it all,” said Pham.

“It’s been done,” said Sura.

“It’s been tried,” corrected Bret…“You and a thousand friends would have to work for a century or so to
reproduce it… And guess what—even if you did, by the time you finished, you’d have your own set of
inconsistencies. And you still wouldn’t be consistent with all the applications that might be needed
now and then…”

“The word for all this is ‘mature programming environment.’’

http://www.acmqueue.org/modules.php?name=Content&pa=printer_friendly&pid=245&page=1

